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NEW ALGORITHMS FOR FINDING 
IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS 

VICTOR SHOUP 

ABSTRACT. We present a new algorithm for finding an irreducible polynomial of 
specified degree over a finite field. Our algorithm is deterministic, and it runs in 
polynomial time for fields of small characteristic. We in fact prove the stronger 
result that the problem of finding irreducible polynomials of specified degree 
over a finite field is deterministic polynomial-time reducible to the problem of 
factoring polynomials over the prime field. 

1. INTRODUCTION 

In this paper we present some new algorithms for finding irreducible polyno- 
mials over finite fields. Such polynomials are used to implement arithmetic in 
extension fields found in many applications, including coding theory (Berlekamp 
[5]), cryptography (Chor and Rivest [8]), multivariate polynomial factoring (von 
zur Gathen and Kaltofen [13]), and parallel polynomial arithmetic (Eberly [9]). 

Let p be a prime number, F the finite field GF(p), and n a positive integer. 
Consider the deterministic complexity of finding an irreducible polynomial in 
F[X] of degree n. Since encoding a polynomial in F[X] of degree n requires 
about n logp bits, a polynomial-time algorithm for finding irreducible polyno- 
mials in F[X] of degree n should run in time bounded by a polynomial in 
n and logp. There is no known deterministic polynomial-time algorithm for 
this problem. However, in many applications p is small, and so an algorithm 
that ran in time polynomial in n and p would be of value. We present one 
here. Specifically, we present a deterministic algorithm that on input n and 
p generates an irreducible polynomial in F[X] of degree n, and-ignoring 
powers of logn and logp-runs in time 0(pl12n4). Thus, if p is fixed, e.g. 
p = 2, then our algorithm runs in polynomial time. 

Notation and terminology. Throughout this paper, log x denotes log2 x. In 
order to simplify the statements of running times, we use the expression x' to 
denote a fixed, but unspecified, polynomial in log x . As a further simplification, 
running times will be stated in terms of operations in F, by which we mean 
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one of +, -, x , or /. To obtain bit complexities, we can multiply by (logp)2 
if classical integer arithmetic algorithms are used, or (logp)1+6 if fast integer 
arithmetic algorithms are used. 

Our approach to constructing irreducible polynomials is as follows. In ?2, 
we show that if we are given certain nonresidues in extension fields of F, then 
we can deterministically generate an irreducible polynomial over F of degree 
n in polynomial time: 

Theorem 2.1. Assume that for each prime qjn, q : p, we are given a split- 
ting field K of Xq - 1 over F and a qth nonresidue in K. Then we can 
find an irreducible polynomial over F of degree n deterministically with 

O((logp)n + (logp) ) operations in F. 

In ?3, we go on to show that given an oracle for factoring polynomials over 
F, these extension fields and nonresidues-and hence irreducible polynomials 
over F of degree n-can be constructed deterministically in polynomial time: 

Theorem 3.1. The problem of constructing an irreducible polynomial over F of 
degree n can be deterministically reduced in time bounded by a polynomial in 
n and logp to the problem offactoring polynomials over F . 

We obtain a deterministic algorithm for generating irreducible polynomials 
by replacing the oracle by any variant of Berlekamp's deterministic factoring 
algorithm (Berlekamp [6]). Using the fast deterministic factoring algorithm in 
Shoup [23], we obtain our main result: 

Theorem 3.2. We can deterministically construct an irreducible polynomial over 
F of degree n with O(p1/2(logp)3n3+,+(logp)2n4+,) operations in F. 

Theorem 3.2 implies that if p is a fixed prime, then we can deterministically 
construct an irreducible polynomial over F of degree n in time O(n 4+). 

Even for small values of p, previous algorithms for generating irreducible 
polynomials suffer from at least one of three drawbacks: the rely on a source 
of randomness, they rely on unproven conjectures in the proofs of their run 
times, or they generate polynomials of degree only approximately n . Rabin [ 19] 
gives a randomized polynomial time algorithm. Adleman and Lenstra [1] give 
a deterministic algorithm that runs in polynomial time assuming the Extended 
Riemann Hypothesis (ERH). They also give a deterministic polynomial-time 
algorithm that generates an irreducible polynomial of degree only approximately 
n . Von zur Gathen [1 1] gives several deterministic algorithms that are efficient 
in practice, but his proofs of their running times rely on unproven conjectures, 
and they generate irreducible polynomials of degree only approximately n . 

We also mention two other results on constructing irreducible polynomials, 
of which our results were obtained independently. In a paper on factoring poly- 
nomials over finite fields, Evdokimov [10] gives another proof that irreducible 
polynomials of specified degree can be constructed deterministically in polyno- 
mial time assuming the ERH. Evdokimov's method of constructing irreducible 
polynomials is similar to ours in that Evdokimov essentially reduces this prob- 
lem to the problem of finding various nonresidues in extension fields of F; how- 
ever, Evdokimov constructs these nonresidues by appealing to the ERH (making 
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use of results of Huang [14] and Lagarias, Montgomery, and Odlyzko [17]), and 
does not address the problem of constructing these nonresidues without relying 
on ERH. Varshamov [25] describes a method for constructing irreducible poly- 
nomials of specified degree; however, in some cases the method either breaks 
down or appears to require time greater than a polynomial in n and p. 

In ??4 and 5, we prove some extensions and related results. In ?4, we show 
that our result on finding irreducible polynomials extends to nonprime finite 
fields: 

Theorem 4.1. Given an extension K over F of degree d, we can construct an 
irreducible polynomial over K of degree n deterministically with 

O(p /2 (logp) 3n3 + (logp) n + (logp)n d ) 

operations in F. 

This result allows us to deterministically construct in polynomial time an 
irreducible polynomial of specified degree over a finite field of small character- 
istic. If p is fixed, then our algorithm runs in time O(n4+?d 2+?) . The proof of 
Theorem 4.1 reduces the problem of finding an irreducible polynomial over K 
of degree n to the problem of factoring polynomials over F via the problem 
of constructing, for each prime q n, q = p, the splitting field of Xq - 1 over 
F, along with a qth nonresidue in this field, or just a primitive qth root of 
unity if q also happens to divide d. 

In ?5, we give a new randomized algorithm for finding irreducible polynomi- 
als that makes particularly efficient use of randomness, failing with probability 
exponentially small in the number of random bits used: 

Theorem 5.1. For any constant 0. < c < 1/4, there exists a randomized algo- 
rithm (depending on c ) with the following properties. It uses Fn logpl random 
bits, halts in time polynomial in n and logp, and upon termination, it either 
outputs an irreducible polynomial over F of degree n, or reports failure. Fur- 
thermore, the probability that it fails is no more than 1/ Cl . 

This result is of value in a setting where random bits are viewed as a scarce 
resource. See Shoup [22], Bach [3], Bach and Shoup [4], Karloff and Raghavan 
[15], and Krizanc, Peleg, and Upfal [16] for other work along these lines. 

2. REDUCTION TO CONSTRUCTING CYCLOTOMIC EXTENSIONS AND 

FINDING NONRESIDUES 

This section is devoted to a proof of 

Theorem 2.1. Assume that for each prime q n, q : p, we are given a splitting 
field K of Xq - 1 over F and a qth nonresidue in K. Then we can find an 
irreducible polynomial over F of degree n deterministically with 

O((logp)n4+6 + (logp)2) 

operations in F. 

The splitting field of Xq - 1 is the smallest extension of F containing a 
primitive qth root of unity. It is also the smallest extension of F containing 
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qth nonresidues. From group theory, we see that this is just GF(pm), where 
m is the smallest positive integer such that q divides pm - 1 , the order of the 
group GF(pm)* . That is, m is the order of p mod q . Note that mIq - 1 . The 
hypothesis of Theorem 2.1 means that we are given an irreducible polynomial 
f over F of degree m and a qth nonresidue a in F(a), where a is a root 
of f. 

We now describe our algorithm. Let n = q el ... qer be the prime factorization 
of n. We first construct irreducible polynomials over F of degree qe for 
i = 1, ... , r. We then "combine" these polynomials to form an irreducible 
polynomial of degree n. 

Step 1: Constructing irreducible polynomials of prime power degree. Let 1 < 

i < r be fixed, and let q = qi, e = ei. We want to construct an irreducible 
polynomial in F[X] of degree qe. We break the problem down into three 
cases: (1) q : 2, q : p, (2) q = 2, q : p, and (3) q = p . 

Case 1: q : 2, q : p . Let m be the order of p mod q . By hypothesis, we are 
given an irreducible polynomial f of degree m over F, and a qth nonresidue 
a in K = F(a), where a is a root of f . 

We will make use of the following result from Lang [18, p. 331, Theorem 
9.1]. 

Lemma 2.2. Let K be a field and d an integer > 2. Let a E K, a $ 0. 
Assume that for all prime numbers t dividing d, we have a 0 Kt, and if 41d 
then a 0 -4K4 . Then Xd - a is irreducible in K[X]. 

Note that Kt denotes the set of all tth powers of elements in K. By Lemma 
2.2, the polynomial Xq - a E K[X] is irreducible. We can represent the field 
E = GF(pmq) by K(#), where /3 is a root of Xq -a. Now, H = GF(pq) 
is a subfield of E. We have the following picture: 

E = K(/3) 

K = F(a) H 
m q 

F 

It will suffice to find an element y in E of degree qe over F. We can then 
construct its minimum polynomial over F by computing 

(X - y)(X- yP) * (X - yP ) 

This will be an irreducible polynomial of degree qe over F. But finding an 
element in E of degree qe over F is easy. Let T be the trace from E down 

to H; that is, for any x in E, T(x) = x +x0 + +x0 ,where a is the 

generator of the Galois group of E over H given by x -x . Then we claim 
that y = T(,B) has degree qe over F. 

To prove this claim, suppose to the contrary that y has degree qt over F, 
where t < e. Then it is easy to see that y has degree qt over K. Now, 
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[K(/#): K( gq)] = q, and so in particular, y lies in K(gq). For i = 0, ..., 
m - 1, let piq = x q + y1, where 0 < y1 < q . It is easily seen that the yj's are 

distinct, since p (which is _q (mod q)) has order m mod q. This gives us 
an equation . 

(qo)X yo +... + (,q)x,_ _fym-I _ y = 0. 

Thus, /3 is a root of a nonzero polynomial over K(flq) of degree less than q. 
But this contradicts the fact that fl has degree q over K(flq), and so the claim 
is proved. 

Case 2: q = 2, q : p. We want to find an irreducible polynomial of degree 
2e. In this case, as in Case 1, we make use of Lemma 2.2. Since p is odd, 
p +1 (mod 4). Suppose p 1 (mod 4). Then (-l)(P-1)/2 - 1, and so -1 
has a square root in F. Therefore, if we have an element a E F that is not 
a square, then we certainly cannot have a = -4b 4, since -4b4 is a square. 

2e 
Thus, the hypotheses of Lemma 2.2 are already satisfied, and so X - a is 
irreducible. 

Now suppose p -1 (mod 4). In this case, we can quickly find an irre- 
ducible polynomial of degree 2e deterministically. We have ( I1)( 1)/2 = 

so -1 does not have a square root in F, and therefore X + 1 is irreducible. 
If e = 1, we are done. Otherwise, we can proceed as follows. We construct 
the field F(i) where i = /"T. Since -1 has a square root in F(i), if we 

2e-1 find an a E F(i) that is not a square, then X - a is an irreducible polyno- 
mial in F(i)[X] (by reasoning identical to that in the previous paragraph). Let 

2eI E = F(i, a), where a is a root of X - a . It is easy to see that E = F(a) 
(since [F(i, a) : F] = lcm([F(i) : F], [F(a) : F])), and so it will suffice to 
compute the minimum polynomial of a over F, which has degree 2e. Let 
a be the automorphism on F(i) defined by i -* -i. Then the minimum 

ijutX2e- 1 X2- polynomial for a over F is just (X - a)(X - a ). 
So we have reduced the problem to finding a quadratic nonresidue in F(i). 

This is easily done as follows. F(i)* is a cyclic group of order p - 1 . Write 
p2 - 1 = 12 , / odd. If we take k - 2 successive square roots of i, we will obtain 
a primitive 2 kth root of unity in F(i). This must be a quadratic nonresidue; 
otherwise, its square root would be an element of order 2k+1 in F(i)*, which 
is impossible by Lagrange's theorem. 

So we have reduced the problem to taking square roots in F(i) . But this can 
easily be done using the formula 

/ = ( 1 + (>(a- 1)/2 (p-p1)/2 
(p?1)/4 

which holds for every quadratic residue a in F(i), except if a( 1)/2 = -1 , in 
which case A/d = i ) 

Case 3: q = p. We want to construct an irreducible polynomial of degree pe. 

Our approach in this case follows Adleman and Lenstra [1]. We will show how 
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to inductively construct a sequence of irreducible polynomials f1, f2, ... e 
2 e 

over F of degrees p, p, ...p 

Lemma 2.3. The polynomial XP - X - 1 is irreducible in F[X] . Furthermore, 
if K is an extension of F, and a E K, and the polynomial XP - X - a is 
irreducible in K[X], and E = K(a), where a is a root of XP - X - a, then the 
polynomial XP - X - aao1 is irreducible in E[X]. 

Proof. According to Artin-Schreier theory (see, e.g., Lang [18, p. 325, Theorem 
6.4]), over any field of characteristic p, the polynomial XP - X - a is either 
irreducible or splits completely. The first statement of the lemma follows imme- 
diately from this. To prove the second statement, suppose that XP - X - aap 1 
is not irreducible in E[X]. Then it has a root /3 in E, which we can write as 
/3 = Z%'P- bo', where the b 's are in K. Substituting this expression for /3 
into the equation /3p - fl - aap-1 = 0, and replacing ap by a + a, we obtain 
an equation 

p-i p-i 
bp b(c( + a)' - E bical - aep- 1 = 0 . 

i=O 1=0 

In the expansion of the left-hand side of this equation, the coefficient of as P1 
is bp1 - b1 - a, which is nonzero by virtue of the fact that XP - X - a is 
irreducible over K. Thus, a is a root of a polynomial of degree p - 1 over 
K, which is impossible, and so the lemma is proved. E 

Let f1 = XP - X - 1. Suppose that we have computed fI, t > 1. Let 
K = F(a), where a is a root of ft. If t = 1, let a = aP1 ; otherwise, 
let a = a2'p1 - ap . The polynomial XP - X - a is irreducible over K. Let 
E = K(fl) , were fl is a root of XP -X-a . It is easy to see that E = F(fl) (since 
[F(oa, /3): F] = lcm([F(o): F], [F(fl): F])). Let ft+1 be the minimum 

polynomial of /3 over F, which we compute as H1ip 1 (XP - X - ap). Observe 
that the polynomial XP - X - aflp t = Xp _ X - (/32p-l _ fP) is irreducible 
over E. 

Step 2: "Combining" irreducible polynomials of prime power degree. Suppose we 
have constructed irreducible polynomials over F of degrees q1 , .. ., qer. We 
will show how to inductively construct a sequence of irreducible polynomials 
over F of degrees q el, qq 2, ..., q . qer = n . It will suffice to solve the 
following problem: given two irreducible polynomials f, g E F[X] of degrees 
a and b, where gcd(a, b) = 1, find an irreducible polynomial of degree ab. 

Lemma 2.4. Let a, A3 E F, where F is the algebraic closure of F . Suppose that 
[F(ae): F] = a, [F(/3): F] = b, and gcd(a, b) = 1. Then [F(a, /3): F] = 

[F(a+/l): F]=ab. 
Proof. We have [F(a, /3): F] = lcm([F(a): F], [F(/l): F]) = ab. Any 
maximal proper subfield of F(a, /3) (i.e., GF(pablr) where r is prime) must 
contain either a or /3, but not both, and hence cannot contain a + /l . There- 
fore, F(a+/3) = F(a, /3). n 
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Suppose that f and g are given as described above. Lemma 2.4 allows us 
to construct a tower of fields F c F(a) c F(a, fi), where a is a root of f 
and /3 is a root of g. The degree of the first step in the tower is a and the 
degree of the second is b. We can construct the minimal polynomial of a + /3 

over F by computing (X - (a+fl))(X- (a +/)) ..(X- (a+fl) ). This 
is an irreducible polynomial over F of degree ab. 

Counting operations. Our step count analysis uses fast algorithms for polyno- 
mial arithmetic based on the Fast Fourier Transform (Schonhage [21], Aho, 
Hopcroft, and Ullman [2]). These algorithms allow us to multiply and perform 
the division algorithm on polynomials of degree d over a field K using O(d ?+8) 
operations in K. Raising a field element to the pth power is done using the 
method of repeated squaring. The following is a breakdown of the complexity 
of our algorithm in terms of operations in F: 

Step 1. Case 1. O((logp)(mqe)2+E) 

Case 2. 0(2e + (logp)2) 
Case 3. 0((p2e- 1 ) ?+t) 

Step 2. 0((logp)n 2+e) 

3. REDUCTION TO FACTORING 

In this section, we prove 

Theorem 3.1. The problem of constructing an irreducible polynomial over F of 
degree n can be deterministically reduced in time bounded by a polynomial in 
n and logp to the problem offactoring polynomials over F. 

Let q be a prime, qln, q 54 p. Let m be the order of p mod q. By 
Theorem 2.1, it will suffice to find an irreducible polynomial f of degree m, 
and a qth nonresidue in F(a), where a is a root of f . 

The basic idea is to factor the cyclotomic polynomial Dq _ Xq- l + ... + 1 
obtaining an irreducible polynomial of degree m. This gives us GF(pm) and 
a primitive qth root of unity 4 in GF(pm). Now, GF(pm)* is a cyclic group 
of order pm - 1. Write pmfl -1 = Iqk, where gcd(l, q) = I . If we take k - 1 
successive qth roots of 4, we obtain a primitive q kth root of unity in GF(pm) . 
This must be a qth nonresidue; otherwise, its qth root would be an element 
of order q k+ in GF(pm)* , which is impossible by Lagrange's theorem. So we 
have reduced the problem to finding roots of polynomials of the form Xq - c 
over GF(pm). Berlekamp [6] gives a reduction from factoring in GF(pm)[X] to 
factoring in GF(p)[X]. We give an explicit construction, tailoring Berlekamp's 
reduction to our particular application. 

We inductively define a sequence of irreducible polynomials f(l), ..., f(k) 

in F[X] of degree m, where the roots of f(i) are primitive q'th roots of unity. 
We define f(l) to be any irreducible factor of D q . It is clear that the roots of 

f(l) are primitive qth roots of unity. For i = 2, ... , k, we define f(i) to be 
any irreducible factor of f(i l)(Xq). Since the roots of f(1 1) are primitive 
qi th roots of unity, the roots of f(i) must be primitive q'th roots of unity. 
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Computing the sequence f(l), . f. , f(k) requires us to factor one polynomial 
of degree q - 1 and k - 1 < m logp polynomials of degree mq. Each of 
these polynomials is the product of distinct irreducible polynomials of degree 
m. We then put f = f(k). Any root a of f is a qth nonresidue in F(a). 
This completes the proof of Theorem 3.1. 

Berlekamp's deterministic factoring algorithm runs in time bounded by p 
times a polynomial in the degree of the polynomial to be factored and logp. 
Therefore, Theorem 3.1 implies that we can deterministically construct an irre- 
ducible polynomial over F of degree n in time bounded by p times a poly- 
nomial in n and logp. 

Improvements to Berlekamp's factoring algorithm described in Shoup [23] 
allow us to extract an irreducible factor of a polynomial over F that is the 
product of k distinct irreducible polynomials of degree / using 

O((logp)l2+Ek 1+6 + p 1/2(logp)21 +k 1+E) 

operations in F. Using this improved factoring algorithm and the running time 
bounds stated in Theorem 2.1, we obtain 

Theorem 3.2. We can deterministically construct an irreducible polynomial over 
F of degree n with O(p 12(logp)3n3+', + (logp)2n4+ ) operations in F. 

4. IRREDUCIBLE POLYNOMIALS OVER EXTENSION FIELDS 

In this section, we prove 

Theorem 4.1. Given an extension K over F of degree d, we can construct an 
irreducible polynomial over K of degree n deterministically with 

O(p I2(logp) n + (logp) n + (logp)n d2) 

operations in F. 

The hypothesis of this theorem means that K = F(O), where 0 is a root of 
a given irreducible polynomial over F of degree d. The algorithm described 
in ??2 and 3 could be adapted to this situation in a fairly straightforward man- 
ner. However, we will describe a slightly more complicated, but more efficient, 
algorithm. 

Implicit in our algorithm is a reduction to the problem of factoring polyno- 
mials over F via the problem of constructing, for each prime qIn, q 54 p, the 
splitting field of Xq - 1 over F, along with a qth nonresidue in this field, or 
just a primitive qth root of unity if q also happens to divide d. 

A straightforward implementation of our algorithm, making use of FFT poly- 
nomial arithmetic and the polynomial factoring algorithm in Shoup [23], will 
achieve the stated running time bound. The details are left to the reader. 

We now describe our algorithm. As in ?2, it will suffice to construct irre- 
ducible polynomials over K of prime power degree qe, and then combine 
these to obtain an irreducible polynomial over K of degree n. We consider 
two possibilities: either q does not divide d, or it does. 
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In the first case, it will suffice to construct an irreducible polynomial over F 
of degree qe, for this polynomial will remain irreducible over the larger field 
K. The algorithm in ??2 and 3 can be used for this. 

In the second case, let d = qk/, where gcd(q, 1) = 1. It will then suffice 
to find a polynomial of degree qe over F(0), where 0 is an element in K 
of degree qk over F, for this polynomial will remain irreducible over K. To 
facilitate efficient computation in F(0) , we construct the minimum polynomial 

k _ 

of i) over F by computing (X-_0)(X-0P) ...(X-0P ). We can find such 
an element i) quickly in the following way. Construct the minimum polynomial 
of 0 over GF(p ) by computing (X - 0)(X - Ha) (X - 0H ), where a 

generates the Galois group of K over GF(pq). Suppose this polynomial is i0+ 

toX?+ + g1lX +X . Then it is easy to see that [F(O,..., _, ): F]= 
qk , and so one of the it's must have degree qk over F. We can examine each 

0, until we find one such that op $ i. Now let 0 = 0,. This has degree 
k 

q over F. 
To construct an irreducible polynomial of degree qe over F(O), as in ?2, 

we break the problem into three cases: (1) q $ 2, q 5 p, (2) q = 2, q 54 p, 
and (3) q = p. 

Case 1: q $ 2, q 54 p. We assume that we have the field F(,), where 4 
is a primitive qth root of unity, which we can obtain by factoring the qth 
cyclotomic polynomial. Let m = [F(4): F], i.e., m is the order of p mod q. 
Since m and q are relatively prime, we can construct the tower of fields F c 

F(i) c F(O, A), where the degree of the first step in the tower is qk and the 
degree of the second is m . 

We proceed to find a qth nonresidue a in F(O, 4) as follows. Let L be 

the subfield GF(p'7lq ) of F(O, A), and let a generate the Galois group of 
F(O, A) over L. We compute the Lagrange resolvents 

(01) + (z~a + + q_ I(g1)arq- 

for i = 1, ..., q - 1 . One can show that one of these resolvents, call it a, 
must be nonzero, and that aq is a qth nonresidue in L (see p. 179 of van der 
Waerden [26]). If follows easily from Lemma 2.2 that a is a qth nonresidue 
in F(O, ). 

By Lemma 2.2, the polynomial Xq - a is irreducible over F(i, ( ), so if we 
adjoin a root fi of this polynomial to F(O, 4), we obtain the tower of fields 
F c F()) c F(O, .) c F(O, We can now compute y=T(/3), where T 

k +e 

is the trace from F(i3, 4, /3) down to GF(pq ) . By reasoning almost identical 
to that in ?2, we can prove that y has degree qe over F(i3), and hence we can 
compute the minimum polynomial of y over F(i3) to obtain an irreducible 
polynomial of degree qe over F(i3). 
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k-I 

Case 2: q = 2, q =A p. Let L be the subfield GF(p2 ) of F(0), and let a 
generate the Galois group of F(S) over L. Compute the Lagrange resolvent 

2~~~~~~~~~~~~~~~~~~~~2 a = l3- l~. Then a2 is aquadratic nonresidue in L. Jf k> 1 or p- 1 
(mod 4), then a is a quadratic nonresidue in F(i3) and the polynomial X2 -a 
is irreducible over F(%). Otherwise, let p2 _ 1 = 2st ( t odd), and take s - 2 
successive square roots of a in F(O), using the formula in ?2, obtaining a 
2 2th root b of a. Then b is a quadratic nonresidue in F(i3), and so X2 -b 
is irreducible over F(%). 

Case 3: q = p. As in ?2, we inductively construct a sequence of irreducible 
polynomials over F(i3) of degrees 2 ...e . Everything is essentially the 
same as in ?2, except to get this inductive process started, we need to find an 
element a in F(i3) such that XP - X - a is irreducible. A nice way to do 

this is as follows. Suppose the minimum polynomial of 0 over F is XP + 
k1 

alXP + + a k . Let i be the least positive integer smaller than pk such 
that i W 0 (mod p) and a, =$ 0. We claim that such an i exists, and that 
XP - X - aY is irreducible over F(O3). 

To prove this claim, we first observe that such an i must exist, since otherwise 
the minimum polynomial of 0 over F would be a perfect pth power. Second, 
one can show that the polynomial XP - X - a is irreducible over F(a) if 
and only if T(a) =$ 0, where T is the trace from F(i3) down to F (this 
follows from Hilbert's Theorem 90, and the Artin-Schreier Theorem on p. 325 
of Lang [18]). But using Newton's formulas for sums of powers of the roots of 
a polynomial (Uspensky [24, p. 261]), we have the following recurrence relation 

T(Oi) + al T(O 3'1 ) + - + a, T(3) + iai = ? (i = I, ...,p),k 

from which the claim now follows directly. 

5. A NEW RANDOMIZED ALGORITHM 

This section is devoted to a proof of 

Theorem 5.1. For any constant 0 < c < 1/4, there exists a randomized algo- 
rithm (depending on c ) with the following properties. It uses [n logp] random 
bits, halts in time polynomial in n and logp, and upon termination, it either 
outputs an irreducible polynomial over F of degree n, or reports failure. Fur- 
thermore, the probability that it fails is no more that 1 /pcn. 

Let q be a prime, qIn, q =$ p. Let m be the order of p mod q. By 
Theorem 2.1, it will suffice to find an irreducible polynomial f of degree m 
and a qth nonresidue in F (a), where a is a root of f, for each such q. 

We obtain an irreducible polynomial f of degree m by factoring the cyclo- 
tomic polynomial FD = Xq 1 + + 1 . Using [n logpl random bits, we can 
construct a list p of n numbers between 0 and p - 1 with an almost-uniform 
distribution (see Bach and Shoup [4, ?4] for details). Let 0 < 5 < 1 be a con- 
stant. Algorithms in Bach and Shoup [4] will completely factor (Dq with failure 
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probability < Il/p ()n14 using n random field elements in (n logp)o(l) steps. 
We can use our list p as the source of random field elements. 

Having obtained If, we construct the field K = GF(pm). Now we need to 
find a qth nonresidue in K. We could do this by factoring more polynomials, 
as in ?3; however, we can proceed much more straightforwardly using 

Lemma 5.2. Let K = GF(s) and let djs - 1, d $& 1. Let k = F(logds)/21. 
Suppose c I...,' Ck E K are distinct constants. Then if x E K is chosen at 
random, the probability that x + c1, X + c2, ... , X + c are all in Kd is at most 

(logd s)/2 + 2 
51/2 

Proof. Let z be the probability that x + cl, ..., x + ck are all dth powers. 
Consider the system of equations 

X + c1 = 
d 

(*) 

X + ck = ok. 

Let N be the number of tuples (x, y1, ... , Yk) satisfying (*). We want to get 
an upper bound on N. Let X be a character of order d on K. For fixed a E 

d d 
K, the number of solutions to the equation y = a is 1 + /(a) +* * + X - (a) . 
Therefore, 

k 

N= ZFJ(l+z(x+cl)+...+xd-l(x+c)) 
xEK i=1 

ZE E X((x + C ) (X + Ck)) 
O<el e <d- 1 xEK 

In this last expression, the term corresponding to el = = ek = 0 is s. 
For the other terms, we can bound the magnitude of each character sum by 
(k- 1)s1/2 (see Schmidt [20, p. 43, Theorem 2C']). Since there are dk _ 1 such 
terms, we have 

N<s+d (k- I)sl/2 

Dividing this by d k, we get a bound on the number of x E K for which 
there exist nonzero Y1, ... Yk satisfying (*) . Divide again by s to get the 

probability z' that x + cl, .. ., x + ck are all nonzero dth powers. So we have 

r< Il/d +(k- l)/sl/2. Since z < k/s+ ', we have z < k/s+ l/dk + 

(k - I)/sl/2. Plugging in k = F(log s)/21 I and observing that k < Sl/2, gives 
the desired result. Ei 

Let s = pa' . Then using m random elements of F, we can construct a ran- 
dom element of K. Using this random element, we can find a qth nonresidue 
with failure probability < (((logq s)/2 + 2)2/s) 1/2 . There is a constant M (that 
depends on 8 ) such that for s > M, we have ((logq s)/2 + 2)2 < s . Therefore, 
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if s < M, we can find a qth nonresidue by brute force search; otherwise, we 
can find a qth nonresidue with failure probability < I/p (I-6)m/2 

Let u = Ln/mi . Using p, we can perform u independent searches for a qth 
nonresidue, obtaining a failure probability bound of l/p(lI-)mu/2 < ?/p(I-6)nl4 
this last inequality following from the fact that mu > n/2. 

We now consider the failure probability for constructing an irreducible poly- 
nomial of degree n. We can reuse p for each of the randomized steps, of 
which there are at most 2 log n (two for each q ). So the failure probability is 
no more than 2 log n p(l )n/4. For sufficiently large p>, this is no more than 
1/P (1 ) n/4 For small pn we can use brute force search. Now choose a so 
that (1 - 5) 2/4 is smaller than the given value of c. This proves the theorem. 
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